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In agreement with a recent experimental discovery by Xi et al. (Phys. Rev. Lett.,
vol. 102, 2009, paper no. 044503), we also find a sloshing mode in experiments
on the large-scale circulation (LSC) of turbulent Rayleigh-Bénard convection in a
cylindrical sample of aspect ratio one. The sloshing mode has the same frequency as
the torsional oscillation discovered by Funfschilling & Ahlers (Phys. Rev. Lett., vol. 92,
2004, paper no. 1945022004). We show that both modes can be described by an
extension of a model developed previously Brown & Ahlers (Phys. Fluids, vol. 20,
2008, pp. 105105-1-105105-15; Phys. Fluids, vol. 20, 2008, pp. 075101-1-075101-16).
The extension consists of permitting a lateral displacement of the LSC circulation
plane away from the vertical centreline of the sample as well as a variation of
the displacement with height (such displacements had been excluded in the original
model). Pressure gradients produced by the sidewall of the container on average
centre the plane of the LSC so that it prefers to reach its longest diameter. If the LSC
is displaced away from this diameter, the walls provide a restoring force. Turbulent
fluctuations drive the LSC away from the central alignment, and combined with the
restoring force they lead to oscillations. These oscillations are advected along with
the LSC. This model yields the correct wavenumber and phase of the oscillations,
as well as estimates of the frequency, amplitude and probability distributions of the
displacements.

1. Introduction

Rayleigh-Bénard convection consists of a fluid sample heated from below and
cooled from above (for a review, see Ahlers, Grossmann & Lohse 2009). In turbulent
convection, a hot (cold) thermal boundary layer at the bottom (top) becomes unstable
due to buoyancy and emits hot (cold) volumes of fluid known as ‘plumes’ which detach
from the boundary layer and transport heat vertically. In cylindrical containers with
aspect ratio I'=D/L ~ 1 (L is the height and D is the diameter of the sample) these
plumes contribute to the driving of and are carried by a large-scale circulation (LSC).
The LSC on average forms a loop with upflow and downflow on opposite sides of the
sample. The dynamics of the LSC include spontaneous diffusive azimuthal meandering
of the LSC orientation (Sun, Xi & Xia 2005a; Brown & Abhlers 2006a,b; Xi,
Zhou & Xia 2006) and reorientations by both azimuthal rotations (Cioni, Ciliberto &
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FIGURE 1. (a) Diagrams of the twisting oscillation at the extrema. (b) Diagrams of the sloshing
oscillation at the extrema. The dashed lines represent the LSC and the thin solid lines the
references on the vertical z-axis and in the top and bottom planes.

Sommeria 1997; Brown & Ahlers 2006b) and cessations (Brown, Nikolaenko & Ahlers
2005; Brown & Ahlers 2006b). All of these phenomena are now understood on the
basis of a simple stochastic model (Brown & Ahlers 2007a, 2008b) derived from
the Navier—Stokes equations by retaining only physically important terms, by taking
volume averages that lead to two coupled ordinary differential equations and by
adding noise terms to represent the influence of the small-scale turbulent background
fluctuations.

It has long been observed that there are temperature and velocity oscillations
with frequencies corresponding to the turnover times of the LSC (Heslot, Castaing &
Libchaber 1987; Castaing et al. 1989; Sano, Wu & Libchaber 1989; Ciliberto, Cioni &
Laroche 1996; Takeshita et al. 1996; Cioni et al. 1997; Qiu & Tong 2000, 2001a,b,
2002; Niemela et al. 2001; Funfschilling & Ahlers 2004; Qiu et al. 2004; Sun, Xia &
Tong 2005b ; Tsuji et al. 2005; Ahlers, Brown & Nikolaenko 2006). Despite these many
measurements the spatial flow structure corresponding to the oscillations remained
unclear for a long time. A few years ago an analysis based on shadowgraph images
first showed that the spatial structure responsible for the oscillations has a twisting, or
torsional, component around the polar axis of the cylindrical container with out-of-
phase oscillating azimuthal flows in the top and bottom halves of the sample, as shown
in figure 1(a) (Funfschilling & Ahlers 2004). The torsional shape was confirmed more
recently by temperature measurements along the sidewall (Funfschilling, Brown &
Ahlers 2008). Very recently an additional sloshing component of the oscillating
structure was discovered by Xi et al. (2009) and described in detail by Zhou et al.
(2009). This mode consists of a time-periodic lateral displacement of the entire LSC
circulation plane away from the centreline that is in phase along the entire cylinder
axis, as shown in figure 1(b).

There have been previous attempts to find the origin of the oscillations. Villermaux
(1995) presented a model that attributes the temporal oscillations to periodic emission
of thermal plumes from the boundary layers. However, recent experiments showed
that there are no periodic correlations between the thermal signals of the top and
bottom plates (Xi et al. 2009), suggesting that the source of the observed oscillations
is to be found in the bulk. Resagk et al. (2006) predicted an in-phase torsional-
oscillation mode in ellipsoidal containers. The oscillations only existed when the
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ellipticity exceeded a critical value; thus this model does not provide a mechanism for
any oscillation in cylindrical containers in which the oscillations are usually observed.

The model proposed by us, which describes the spontaneous meandering, rotations
and cessations with a pair of physically motivated coupled stochastic ordinary
differential equations (Brown & Ahlers 2007a, 2008b), was extended recently
(Brown & Ahlers 2008a) with perturbative terms to describe systems with various
asymmetries. In one case we predicted an in-phase torsional oscillation in which the
restoring force comes from the pressure gradients due to the sidewall in containers
with non-circular cross-sections. At the time we did not anticipate the existence of
perturbations in which the LSC plane is displaced away from the central cylinder
axis, and thus we did not predict the recently characterized sloshing mode. In the
present paper we show that the model can be extended to describe the physical
mechanism for and the structure of the observed oscillations of the LSC in cylindrical
containers by simply relaxing the assumption of a centred LSC circulation plane. We
further show that the torsional and sloshing modes can be described simultaneously
as a pair of oppositely travelling waves. This behaviour can be predicted by an
extension of the model in which we remove the simplifying assumption of a planar
(height-independent) LSC and by adding the appropriate advection term.

In the next section we present the results of new analyses of experimental data
from Brown & Ahlers (2006b, 2008a,b). First, in §2.1, we discuss the sinusoidal
fitting-function (SF) analysis method used by us previously and the ‘temperature-
extremum-extraction’ (TEE) method introduced by Xi et al. (2009). There we also
present an extended SF method which includes higher harmonics that enable the
detection of the sloshing mode and a measurement of the sloshing amplitude. In
that section a comparison of time series for the slosh displacement angle obtained
by the extended SF method and the TEE method is presented. In §2.2 we examine
the probability-distribution functions of the slosh displacement and of the torsional
displacement. In § 3 we extend the model presented by us previously (Brown & Ahlers
2007a, 2008b) and show that it can explain the existence of the sloshing mode as a
consequence of the restoring force that arises from a lateral displacement of the LSC
circulation plane due to the turbulent background fluctuations and away from the
sample centreline. In §4 we show that this model also leads naturally to the torsional
oscillation discovered several years ago (Funfschilling & Ahlers 2004); the origin of
this mode had been unexplained before because the model had been restricted to
an LSC with a circulation plane that contains the vertical sample centreline. Finally,
in §5, we summarize the contents of this paper and discuss the broader applicability
of its approach to other geometries.

2. Experimental results for the slosh displacement
2.1. Analysis methods and the slosh displacement angle

We use data obtained originally by Brown & Ahlers (2008b) to search for
the sloshing mode. The results presented here are for a Rayleigh number
Ra=BgATL3/(kv)=1.1x10"" and Prandtl number Pr=v/k =4.38 (B is the
isobaric thermal expansion coefficient, g the acceleration of gravity, AT the applied
temperature difference, L the sample height, v the kinematic viscosity and « the
thermal diffusivity). The sample was a water-filled cylinder with L =24.76 cm and
aspect ratio I'=D/L=1.00 (D is the sample diameter). The data consisted of
temperature measurements by thermistors embedded in the sidewall. There were
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FIGURE 2. Example of a temperature profile measured by the sidewall thermistors at the
midplane for R =1.1 x 10'°. The thin dash-dotted lines denote the TEE fit of extrema; the
dashed line denotes cosine fit of (2.1); the dotted line denotes second-order sinusoidal term
A, obtained from fitting (2.2) to the difference between the data and the cosine fit; the thick
solid line denotes the fit obtained from the Fourier-moment method, corresponding to the sum
of the dashed and dotted lines.

eight thermistors, equally spaced azimuthally, at each of three different heights: the
mid-height which is defined to be at z=0, height z=L/4 and height z=—L/4.

The temperature measurements capture the behaviour of the LSC by detecting the
upward, hot flow on one side and downward, cold flow usually on the opposite side
of the container. Previously, to characterize the LSC, we fit a sinusoidal function

T(0) =Ty + & cos(6 — bp) (2.1)

to the thermistor temperatures measured around the sidewall at a given height (Brown
et al. 2005; Ahlers et al. 2006; Brown & Ahlers 2006b ; Funfschilling et al. 2008). The
orientation of the LSC was defined as 6, corresponding to the hot side of the sample
with upward flow. The amplitude of the LSC is characterized by §. An example is
shown by the dashed line in figure 2. This fitting function was useful for studying
azimuthal diffusion and cessations of the LSC, as well as torsional displacements and
oscillations in which the maximum and minimum of the temperature profile have
a phase separation of m. The sloshing oscillation was discovered and characterized
(Xi et al. 2009; Zhou et al. 2009) using instead the TEE method for obtaining
the orientation «; of the maximum and the orientation «,. of the minimum of the
azimuthal temperature profile. The TEE consists of fitting a quadratic function to
each of the two temperature extrema and their two neighbouring temperatures, as
shown in figure 2 by the two thin dash-dotted lines (each of which passes through
three data points). The extremum of the quadratic fit is taken as the orientation. The
SF has the advantage of using all the information from the eight temperatures at
a given height, but does not allow the phase difference between «;, and «. to differ
from m. Thus it cannot detect the sloshing mode. The TEE uses information from
only three thermometers at a time, but does not have the phase constraint and thus
can reveal the sloshing mode. We used the TEE method to re-analyse data from
earlier experiments (Brown & Ahlers 2006b, 2008a,b) and found that those data also
contained information about the sloshing oscillations. We define the angles o, and
a, with a built-in phase difference of m so that o, =, corresponds to a centred
LSC circulation plane and counterclockwise displacements are positive. The slosh
displacement angle is then o’ = (a, — .)/2. An example of a time series of the slosh
displacement angle «’ obtained with the TEE method is shown as open circles in
figure 3. Since the TEE method fits to only three thermistor readings whereas the
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FIGURE 3. Time series of the slosh displacement angle o' =(a; — )/2 for the middle-row
thermistors at R=1.1 x 10'°: solid circles, from the Fourier-moment method; open circles,
from the TEE method of Zhou et al. (2009).

sinusoidal fit uses eight, the TEE method is more susceptible to being biased by local
temperature fluctuations when the signal is very noisy. (In a typical case, the root-
mean-square noise amplitude due to turbulent fluctuations is approximately 0.285 at
R =1.1x10'"; Brown & Ahlers 2007h.) An example of this can be seen in figure 2 in
which the high temperature at 8 =0 does not contribute to the determination of the
extrema even though it is only 11 % below the highest measured temperature, well
within the typical fluctuation level; thus it cannot be determined which point better
represents the LSC extrema. To better deal with these local fluctuations we developed a
method of characterizing the sidewall temperature profile based on Fourier moments.
The dominant term was the cosine fitting function (2.1). We took the Fourier series
of the difference between that fit and the actual signal. While cosine terms are still
symmetric and thus cannot contribute to a slosh displacement, the antisymmetric sine
terms can characterize the off-centre displacement as a perturbation of the dominant
cosine term. We calculated the sinusoidal Fourier amplitudes

A, = [T — Ty — 8 cos(6 — 6p)] sin[n(6 — 6p)]. (2.2)

The n=1 term was found to be zero because all it would do is shift the temperature
profile, which had already been taken care of by the fit of ;. Higher-order terms
showed strong fluctuations, and the power spectra of mode amplitudes corresponding
to n=2,3,4 are shown in figure 4. These higher-order moments all have the same
background, similar to the backgrounds of other power spectra measured in the
same system (Funfschilling et al. 2008). The n=2 term has a peak in the power
spectrum at a frequency of 0.02011 +0.00003 Hz, equal to that observed by cross-
correlations of thermistors on opposite sides of the sample which was 0.02008 Hz
for this R =1.1 x 10'° (Brown, Funfschilling & Ahlers 2007). This suggests that the
cross-correlation also measured the slosh frequency, as suggested originally by Zhou
et al. (2009). Since the A, term is the only one which differs from a noise distribution,
the temperature profile can be described by the cosine term plus the n =2 term. For
A, # 0, the temperature profile is tilted so that the extrema become closer together,
corresponding to a slosh displacement. The slosh displacement angle o’ satisfies the
equation § sina’ =2A, cos(2a’). An example of this fit is shown in figure 2 in which it
also is compared with the other fitting methods. It is seen that this fits the data better
than the cosine method by itself. In this example, the TEE method gave a peak to
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FIGURE 4. The power spectra of the sinusoidal Fourier moments of the temperature profile
T(9) for the middle-row thermistors at R =1.1 x 10'°, The solid line denotes second-order
moment (n=2), the grey line third-order moment (n=3) and the dotted line fourth-order
moment (n =4). Although away from the peak it is difficult to distinguish the three, it is clear
that they all agree with each other except that only the second moment (solid line) has a
pronounced maximum. The power spectra were smoothed for clarity.

the left of that found by the cosine method, while the Fourier-moment method gave
a peak to the right. A time series of o’ comparing this fitting method with the TEE
method is shown in figure 3 as solid circles. From this time series, the oscillations
reported by Xi et al. (2009) can clearly be seen. As expected, the modified SF is found
to be smoother than the TEE method because it makes use of all eight thermistor
measurements and so is less susceptible to local fluctuations. All cross-correlation
functions between o’ measured at any two different heights show oscillations that are
in phase with each other, consistent with a sloshing oscillation. Thus our observed
oscillations are in agreement with those of Xi et al. (2009) and Zhou et al. (2009).

2.2. Probability distributions of the slosh and the torsional displacements

The probability distributions of o’ based on the Fourier-moment method, computed
separately at each of the three vertical positions (z =4 L/4,0) for R=1.1 x 10'°, are
shown in figure 5(a). They do not differ very much from each other. They are very
flat and even slightly double-peaked, in agreement with the results of Zhou et al.
(2009). We found that p(«’) varied depending on the fitting method used (see §2.1),
which is why we developed the Fourier-moment method to filter out much of the
noise and minimize the effect of local fluctuations on «’. We also computed the
probability distribution p({a').), where (), is the average of o’ over the three levels
at any given moment in time. This is given in figure 5(b) as open circles. Although on
average the slosh oscillations are in phase at all three heights, the shape of the height-
averaged probability distribution changes to a single-peaked distribution that is closer
to Gaussian in shape. We attribute this to random fluctuations of the relative phases
at the three levels which are largely uncorrelated. A Gaussian fit to the peak gives
a width of o, =0.27 rad. In §3 we will present a model that yields such a Gaussian
p({a’)). We will also present a model that includes the twist oscillation in §4. A
height-averaged twist amplitude can be represented by [6y(L/4) — 6o(—L/4)]/2. This
is plotted in figure 5(b) for the same data set as open squares. A Gaussian fit to the
peak gives a width of oy =0.18 rad.
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FIGURE 5. Probability distributions of the slosh and torsional displacement angles obtained
from the Fourier-moment method at Ra = 1.1 x 10'°. (a) The slosh mode at z =L /4 (top row
of thermistors, open squares), z=0 (middle row of thermistors, open circles) and z=—L/4
(bottom row of thermistors, solid circles). (b) Open circles: probability distribution of the slosh
displacement (o)., where (o), is the displacement averaged over the three rows of thermistors
at fixed time. Solid line: Gaussian fit to the open circles near the peak. Open squares: the
probability distribution of the twist displacement angle 0’ = [0y(L/4) — 6o(—L/4)]/2. Dashed
line: Gaussian fit to the open squares near their peak.
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FIGURE 6. The solid lines denotes the power spectra P(w) of the slosh amplitude at
Ra=1.1 x10'0 at the three vertical positions. Results for the top (bottom) row of thermistors
at z=L/4 (z=—L/4) were multiplied (divided) by a factor of 10 in order to make all three
data sets distinguishable from each other. The dashed line denotes a fit of the predicted power
spectrum for the background from (4.9) to the midplane (z =0) data.

2.3. Power spectra

Power spectra P(w) of o are shown separately for the three vertical positions in
figure 6. Despite the fact that p(«’) is narrowest at the midplane, the peak of the
power spectrum is larger at the midplane in agreement with Zhou et al. (2009),
showing that the oscillation amplitude is larger there. Besides showing a peak which
gives the oscillation frequency, the measured power spectrum has several distinct
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scaling regions. It reaches a constant in the limit of small frequency, scales as w™!

before the peak and scales as w™ in the large-frequency limit. In §4 we will present
a model power spectrum that fits well to this data.

3. Model for the sloshing oscillation
3.1. The basic model

The dynamics of the midplane orientation 6, of the LSC in cylindrical containers can
be described by a stochastic ordinary differential equation in terms of the measured
parameters 6, and §. This equation was obtained by taking approximate volume
averages of appropriate terms of the Navier—Stokes equation (Brown & Ahlers
2007a, 2008b). The full derivation has been given by Brown & Ahlers (2008b), but
we will describe it briefly here. In the simplest case with no asymmetries, there is
nothing to drive the azimuthal dynamics of the LSC other than turbulent fluctuations
which are represented by a stochastic term f;(z). This term could be represented by
a Gaussian white noise distribution which can be described by a single parameter: a
diffusivity D, whose value was obtained from experiments (Brown & Ahlers 2008b).
The damping of the dynamics was found to be dominated not by viscosity but rather
by rotational inertia which comes out of the nonlinear advective term of the Navier—
Stokes equation. This term is coupled with the flow strength of the LSC which we
characterize by the measured temperature amplitude §. Putting these terms together
with the inertial term gives the Langevin equation

o=~ 4 file). (.1

0Th

Here 8, represents the mean value of § and 7, (=6.9 s for R =1.1 x 10'°) is the inherent
damping time scale of the system. The behaviour of the temperature amplitude § can
be described by a separate equation in which g, is determined by a balance between
buoyancy and drag forces and in which its dynamics are driven by another stochastic
term. The dynamics consist of fluctuations around a stable fixed-point value 3§y, with
occasional (about once per day) large fluctuations to an unstable fixed point at § =0
corresponding to cessations of the flow. These equations successfully described the
azimuthal meandering of the LSC orientation seen in experiments and gave estimates
of the measurable physical parameters which were typically good within about a factor
of two (Brown & Ahlers 2007a). For the purposes of the present work we focus only
on azimuthal oscillations which we will obtain by adding a restoring force to (3.1).
The cessations are rare (about once per day, compared to an oscillation period of
49 s at R=1.1 x 10'°). Thus they occur independent of the oscillations and the vast
majority of the time we can approximate § = 4§, and eliminate the coupling altogether.
In this limiting case the dynamics of (3.1) correspond to diffusive fluctuations. In
cases in which fluctuations in the damping term can affect the dynamics, they are
well described on the time scale of the oscillations as Gaussian distributed with width
0.228¢ (Brown & Ahlers 2008b). This model was extended by Brown & Ahlers (2008a)
to include perturbations that break the rotational invariance of the original model.
In particular, it provided a qualitative explanation for why non-circular cross-sections
cause the LSC circulation plane to align along the longest diameter. The predicted
mechanism depends on the restoring pressure provided by the sidewall. The primary
component of this pressure exists also for the rotationally invariant case and provides
the force to drive the LSC in a closed loop. A secondary component appears when
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FIGURE 7. A horizontal cross-section showing the sidewall forcing for a horizontal
displacement of the LSC. The solid vertical line corresponds to the plane of the LSC when it
is displaced from a central alignment by the slosh displacement angle o’. The component i,
of the normal force F provides the centripetal acceleration for the LSC, and the component
ity acts as the restoring force for a sloshing oscillation. The primary LSC velocity ug is
perpendicular to this cross-section.

the rotational invariance is broken and pushes the LSC towards alignment with
the longest diameter. For non-circular cross-sections, the sidewall pressure yields a
potential dependent on a diameter function D(0) corresponding to the azimuthally
varying container diameter for an LSC that always crosses the centre of the container
(Brown & Ahlers 2008a). This gives a preferred orientation aligned with the longest
diameter with possible oscillations driven by stochastic fluctuations.

3.2. Potential due to pressure forcing from the sidewalls

Here we show that the same sidewall pressure mechanism can explain the sloshing
oscillations of the LSC in containers with circular cross-sections. The result turns out
to be determined by a diameter function that depends on the off-centre displacement
of the LSC circulation plane. This function is analogous to the case for containers
with non-circular cross-sections. We will calculate model terms for containers of
height and diameter both equal to L and with circular horizontal cross-sections for
comparison with experiments, but this geometrical restriction is not necessary in
general. (but of course the geometry has to be such that a single-loop LSC is a good
approximation to the physical system). To allow for a slosh displacement we must
relax the original assumption that the LSC circulation plane passes through the cell
centreline. The diameter as a function of slosh displacement in a cylindrical container
is D(«')=Lcosca’. For simplicity we consider a planar LSC with an infinitesimal
width. We will cover a non-planar LSC in §4. The model can be simply explained
based on a vector force balance on the plane of the LSC at the inner edge of the viscous
boundary layer at the sidewall at which the vertical velocity peaks. This result can be
added as a perturbation to the Langevin equation (3.1). The radial pressure provided
by the sidewall can be broken down into two orthogonal components: one along the
plane of the LSC which provides the centripetal acceleration i, = 2u§5 /D(’) and one
perpendicular to the LSC plane which must then equal i, =i, tana’. A diagram of
this is shown in figure 7. The LSC velocity at the edge of the viscous boundary layer is
represented as uy = wyL/2 so that w, and ug are independent of o', equivalent to the
form used by Brown & Ahlers (2008a). Combining these terms gives the contribution
to angular acceleration from pressure forces,

) 21t , tanao’

a, = =—w,——.
& D(a) ?cos? o’

(3.2)
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The pressure of the sidewall provides a restoring force for the plane of LSC if it
is off-centre. While the LSC plane had originally been assumed to be aligned with
the cell centre, the off-centre alignment can be generated by the action of turbulent
fluctuations. We can describe the dynamics by adding &, as a perturbative term to
a dynamic equation for «’ analogous to (3.1), assuming the stochastic and damping
terms are the same for this off-centre perturbation of the LSC as for other modes:

sa’ , tano’
o = — —wy;——— 5(1). 33
(o4 80'[9 a)q& COSZ o + fﬁ( ) ( )
The slosh dynamics can be expressed in terms of diffusion in an azimuthal potential
given by
a)éL2
V, = —/ozg do’ = D@) (3.4)

where D(a')=Lcosca’. This is written in terms of the diameter function with the
same form as the effect of the cross-section geometry (Brown & Ahlers 2008a).
In principle the diameter function could be calculated for slosh displacements in
different cross-section geometries. An alternate derivation based on volume-averaging
the Navier—Stokes equations throughout the sample was given by Brown & Ahlers
(2008a) and produces the same result.

We derived equations assuming the width of the LSC is infinitesimal for simplicity.
Accounting for a finite width of the LSC is not expected to qualitatively change
results; it may have the effect of smoothing out the potential near the minimum, and
the potential may increase dramatically at an angle smaller than ©/2 due to the LSC
being forced to the side of the container.

3.3. Oscillations

We can obtain a linearized Langevin equation from (3.3) by assuming small o’
and assuming 8§ =8, which is a good approximation in experiments except during
cessations. This equation is given by

<!

& = —% — wld + f(0). (3.5)

[4

The resonant frequency of the deterministic part of the equation is

W, = \/wé — 1/(47:92). (3.6)

This corresponds to the natural frequency w, when the damping term is small
compared to the restoring term and is of the same order as the frequency of the LSC
turnover as observed in experiment (Xi et al. 2009). The natural frequency scales with
the turnover frequency as observed because the restoring force comes from sidewall
pressure which balances with the centripetal acceleration of the LSC.

3.4. Probability distribution

The probability distribution of the orientation can be obtained from the steady-state
Fokker—Planck equation in the strong-damping limit and is

p(a’) oc exp (— Ve > ) (3.7)

7y Dy

Expanding V, up to second order gives a Gaussian distribution with width
oy = ./Dyty/w,. Based on experimental measurements of the parameters t; and Dy
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(Brown & Ahlers 2008b) we expect o, ~0.22 rad at Ra=1.1 x 10'° and a Rayleigh-
number dependence proportional to Ra—%?2. The predicted width of the distribution
is close to the value 0.27 rad found in §2.2 with no significant trend with Ra (Zhou
et al. 2009). Since there are oscillations, a strong-damping solution is not exact but
nonetheless gives an estimate for the amplitude.

If we consider the prediction for larger o, we note the restoring force diverges at
o' =m/2, which means that the amplitude of «’ is strongly bounded to remain less than
n/2. This is physically significant because at o' =+ /2 the LSC would be confined
to a vertical line at the side of the container. The typical amplitude of oscillation is
on the same scale, so if the potential did not turn up sharply large fluctuations could
lead to a break-up of the LSC. This specific form of break-up has not been observed.
The drop-off in the probability distribution shown in figure 5 occurs at a smaller
displacement angle of about 0.6 rad, which would be expected due to the finite width
of the LSC.

4. The torsional oscillation

The sloshing oscillation occurs along with a torsional oscillation with out-of-phase
azimuthal flows in the top and bottom halves of the sample of approximately the
same frequency and amplitude (Funfschilling & Ahlers 2004; Funfschilling et al.
2008; Zhou et al. 2009). These two modes seem to be sufficient to describe all of
the observed temperature and velocity oscillations. Even observations that at first
suggested different structures can be described as being due to projections of the
sloshing oscillation combined with the spontanecous meandering of the LSC. These
include out-of-phase anti-correlations between temperatures at opposite sides of
the sample (Ahlers et al. 2006; Brown et al. 2007) and apparent sloshing parallel
to the LSC plane (Zhou et al. 2009). Thus if we can describe both sloshing and
torsional oscillations, we can describe all of the observed oscillatory dynamics. Some
measurements indicated a difference of up to 20 % between two observed frequencies
measured by different methods depending on Ra (Brown et al. 2007), but for now we
will consider this as a perturbation and first try to explain why the frequencies should
be the same. Both the sloshing and torsional oscillations have been described in the
Eulerian frame in which they appear to have a phase difference of m/2 so that the
sloshing oscillation amplitude is maximized while the twist oscillation amplitude is
zero and the signal at the midplane follows the bottom row on the hot side but follows
the top row on the cold side. It was noted by Zhou et al. (2009) that this direction
is consistent with the direction of advection through the sample with the LSC. If
we instead consider this flow in the meridionally moving Lagrangian frame of the
LSC, the motion is simply a horizontal oscillation of the plumes, as they are advected
along with the LSC such that the hot and cold plumes are always moving in opposing
directions. The oscillation is drawn in both the Eulerian and Lagrangian frames in
figure 8. This suggests that the combination of sloshing and torsional oscillations can
be reinterpreted as travelling waves consisting of oppositely moving plumes.

We now take the step of writing down the equations for these travelling waves.
The nodes of the sloshing oscillation are observed to be at the top and bottom
plates, and the antinode is found at the midplane (Zhou et al. 2009). The node of
the torsional oscillation is observed to be at the midplane (Funfschilling et al. 2008).
For ease of comparison to sidewall measurements we will assume the path of the
LSC to be square around the edge of the sidewall with a length of 4L. This differs
from the assumption of a circular LSC shape in §3, where we needed to calculate
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(a) kz =m/4 kz=0 kz =-m/4 (b)
1=, <+ o,
wt=0
%8 %8 < o X
3
wt= TE/2 _1 »
0 0.5 1.0
%8 %8 (thz — wt)/2m

FiGURE 8. (a) The torsional and sloshing oscillations at different heights and phases in the
Eulerian frame. Circled dot denotes o, where the LSC flow is upward. Circled cross denotes .
where the LSC flow is downward. Connecting lines denote the local plane of the LSC. Arrows
pointing horizontally from the LSC plane denote restoring force on the LSC plane due to
sidewall pressure. Arrows between diagrams indicate the viewing order to follow the advection
of upward- and downward-moving plumes. Slosh displacements are seen at 2wyt =0, n, and
twist displacements are seen at 2wyt =m/2,3n/2. (b) Displacement angles of hot and cold
plumes as functions of height and time. They can be seen as travelling waves moving in
opposite directions. The +k is for o, moving to the right with increasing z, and the —k is for
a. moving to the left with increasing z.

a centripetal acceleration, but the calculations can be treated independently and in
each case are self-consistent. This means that there are two peaks of the oscillation
per cycle of the LSC; the wavenumber is k =mn/L; and the oscillation frequency is
2w, 1f the travelling waves are moving at the speed of the LSC. It has been measured
that temperature and velocity oscillations have a frequency U, /2L, where U,
is the maximum of the vertical velocity profile (Qiu & Tong 2001b). Particle-image
velocimetry measurements have shown that U,,,, overestimates the average LSC speed
by about a factor of 1.2, i.e. Unar = 1.2(U) (Sun et al. 2005b). The path length [ of
the circulation is given by [ =3.4L for large Ra (Sun & Xia 2005), so the oscillation
frequency is 2.0w,, which is self-consistent with the picture of two wavelengths per
cycle. Adjusting the path length from the simplification of 4L to the measured value
of 3.4L would require a small adjustment of k but does not shift the frequency.
We can now write down the empirical equations of motion. For the oscillating peak
positions of the hot upward-travelling waves we have

a, = Acos(nz/L — 2wgt), 4.1)
and for the cold downward-travelling waves we have

o, = —Acos(—mz/L — 2wyt). (4.2)



Origin of oscillations of large-scale circulation of turbulent convection 395
The slosh displacement is

’ ap — Q¢

o = 3 = Acos(nz/L)cos(2wyt), (4.3)
and the twist displacement is
g = w = —Asin(nz/L)sin(2wyt). (4.4)

This form gives a sloshing oscillation amplitude of A cos(mz/L) which is strongest
at the midplane, qualitatively similar to experimental observations (Zhou et al.
2009). This gives an amplitude of Asin(nz/L) for the twist which corresponds
to A/y/2 at heights +L/4 at which the amplitude is measured in experiments.
We measured root-mean-square displacement amplitudes o, =0.27 rad and oy =
0.18 rad at R=1.1x10'" (see §2.2), which yield a ratio of 1.5 in good agreement
with the predicted ratio of /2.

4.1. Advected oscillation model

Since the observed oscillations can be described by a pair of oppositely travelling
waves, we now extend the linear oscillation model (3.5) to describe these travelling
waves. To describe the torsional oscillation with a stochastic differential equations we
must now allow for displacements that vary with height, i.e. a non-planar LSC. With
variation in height z the advection term moving along with the LSC is no longer zero
as was assumed in earlier versions of the model (Brown & Ahlers 2007a). Advection
along with the LSC is represented by the term &, = —u-Va ~ + Uda/9dz, where a path
length of 4L and angular frequency w, gives U =2w4L/m. The advection is upward
for the hot plumes and downward for the cold plumes. Taking the time derivative
of this term to add it to a second-order equation adds spurious stable solutions with
constant & #* 0 which we will ignore. Now that «;, and «, are functions of z, we
evaluate the slosh displacement at opposite sides of the sample, i.e. with a phase
difference of m. (In part this choice of phase difference is in anticipation of travelling-
wave solutions as in (4.7) and (4.8); we could also have chosen to evaluate «;, and
a, at the same height, for example, but that would preclude analytical solutions.) We
rewrite (3.5) including this term. Separating equations for «; and «. yields

_C'Uh(Z, t) 2 ay(z,t) —a(—z,1) _ 2w¢L 06, (z, 1)
7 ¢ 2 T 9z

dn(z, t) = + fulz, 1) (4.5)

and

d(;(Z, t) _ CL)2 aC(Z7 t) - ah(_zv t) + 2(,()¢L adc(zv t)

o o} . e R AU Y

ao(z,1) = —

We choose f,(z,t) and f.(z,t) so that they have the same Gaussian white noise
statistics and magnitude as f;(¢) because they represent the same fluctuations. Possible
steady-state solutions of the deterministic parts of (4.5) and (4.6) have the form

oy, = Aexp(inkgz — iw,t) (4.7)
and
o, = Aexp(—inkoz — iw,t +1¥), (4.8)

where ko =m/(2L). For the circulation to be closed around a loop so that the plume
paths are continuous, the solutions must have integer values of n and a relative phase
difference ¢ = (n+1)m between «, and «.. Note that because we defined displacements
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to be positive if they are counterclockwise from a top view, a positive displacement
for upflow followed around the loop becomes a negative displacement for downflow,
accounting for the extra phase of w. If we consider the n =1 mode with ¢ =0, there
is an in-phase torsional displacement, and an out-of-phase slosh occurs at the top
and bottom. These slosh and twist displacements have a relative phase of w/2. It
turns out that the path lengths of the LSC with the out-of-phase slosh displacement
and the in-phase twist displacement are exactly the same as for a centred vertical
LSC up to second order in «, so there is no restoring force for the n =1 mode. The
n=2 mode corresponds to the observed oscillations of (4.3) and (4.4). There is a
restoring force against this slosh displacement for n =2 because the path length is
shorter than a vertical centred LSC. More generally, the form of the restoring force is
complicated and will not give a pure sinusoidal motion. To get a sinusoidal solution
as an approximation we calculate the restoring displacement with a phase difference
of m. This gives [ay(z, 1) — ac(—z, 1)]/2=au(z, t)[1 — exp(iy¥)] /2. This displacement is
equal to zero for odd n and equal to «,(z) for even n. While all even-order modes
have some restoring force, the lowest order even mode will dominate because damping
will reduce the contributions of higher-order modes. This suggests that the observed
mode should be n=2 and k=mn/L in agreement with the empirical equations (4.3)
and (4.4).
The solutions have the power spectrum

P(@) = Dy[ (0 — @ — nwwy)’ + (/7)) . (4.9)

In the limiting case of weak damping, the resonant frequency is w, =(1 + \/E)wq;.
Resonance with a global maximum in the power spectrum occurs if 1/(tzw,) <2/
1+ ﬁ). Based on independent measurements of the model parameters (Brown &
Ahlers 2008b) we obtain 1/(tyw,)=2.2 for R=1.1 x 10'° which appears to be slightly
above the resonance threshold. However, because of the stochastic nature of the
damping term 68(r)/(8pts) of (3.1), the effective damping is much less than the fixed-
point value of 1/7; (Brown & Ahlers 2008a). Detailed solutions accounting for the
variable damping for similar stochastic oscillators have been shown by Gitterman
(2005). This effective reduction in damping is very sensitive to the model parameters.
It can be as large as an order of magnitude, and it can lead to a large peak at the
natural frequency with just a factor-of-two change in one of the parameters. For a
system with the same variable-damping term, one can find planar oscillations with a
natural frequency weaker by about a factor of five than for the slosh mode (Brown &
Abhlers 2008a). Since the simple criterion for sustainable oscillations is based on a
comparison of the natural frequency with the damping term, the slosh restoring force
should easily be strong enough to drive the predicted travelling-wave oscillations. For
any value of the damping term that allows resonance, the global resonant frequency
remains between 2wy and (1 + ﬁ)w¢. So it is within 20 % of the measured frequency
of 2.0wy. We see that the model is consistent with the observations if we allow
for some uncertainty in the model parameters. However, because a wide range of
solutions is possible for this small range of model parameters, the model does not
provide a strict test of the oscillation amplitude. A better test comes from the width
of the probability distribution in § 3.4.

We fit the predicted background power spectrum (4.9) to the measured
power spectrum of o' at the midplane shown in figure 6. We excluded the
range w,/2 <w < 2w, and allowed wy, 15, n and D, to be adjustable parameters.
The fit gave w,;/(2n)=0.0101+0.0002, 73;=6.140.1s, n=195+0.08 and
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D;=(1.214+0.01) x 107, These fit values of 7, and D; are within 20 % of the
parameter values obtained from independent methods based on power spectra of
6o (Brown & Ahlers 2008b), confirming our assumption that the same values are
appropriate to describe the dynamics of «’. The fit value based on the background
gives wy = 0.50w,, where o, is the measured peak frequency, which is consistent with
our prediction for the n =2 mode in the strong damping limit and with observations.
In contrast, for a linear harmonic oscillator the natural frequency is always greater
than the resonant frequency. The fact that the fit does not produce a peak is not a
concern because (4.9) underestimates the peak as explained in the previous paragraph.
The enhancement is all near the natural frequency since w, 73 =0.9. The region with
a scaling of ™! is not expected in typical linear harmonic-oscillator equations and
appears in the model as a result of the advective term. The crossover to a w~! scaling
with a fit value consistent with n =2 provides support for the advective term in the
model.

The probability distributions of angular displacements p(«’) and p(6’) are predicted
to be Gaussian (see (3.7)). However, the displacement distribution p(«’) at a single
height was observed to be flat or even slightly double-peaked as shown by figure 5(a).
A twist displacement for n =2 has a shorter path length than a centred, planar
LSC and thus corresponds to a lower potential. Since this effect is maximized at
/2 rad out of phase with the slosh displacement, the twist may serve to further
drive the oscillation to larger amplitudes, increasing the effective restoring force and
giving a flatter or double-peaked probability distribution. An average of the slosh
displacements over different heights averages over different phases of the oscillation
and thus will tend to give a smoother distribution. The flat probability distribution
cannot be seen in the twist because there it is only measured based on a difference
in angle at different heights. In any case, the probability distributions based on the
height-averaged displacements were shown to be in good agreement with the model.
It was observed by Funfschilling et al. (2008) that the torsional-oscillation amplitude
tends to be larger when the LSC strength § is weaker. This is expected to be the
case both because the restoring and damping frequencies are physically dependent
on the LSC strength and because they instantaneously should be proportional to §,
which would tend to widen the probability distribution calculated from (3.7) when
8 decreases. A simple substitution does not give an exact result, but we can make a
qualitative prediction that the amplitude of oscillations increases as § decreases.

4.2. Containers with non-circular cross-sections

We can apply this model to other geometries by generalizing the diameter function
D(0, «’). This is valid because the potential in (3.4) has the same form as that found
for non-circular containers in which the diameter function D(0) corresponds to the
length of a chord through the centre of a horizontal cross-section as a function
of orientation 6 (Brown & Abhlers 2008a). Since the potential scales as D(6)2, the
potential minimum corresponds to a longest diameter. In containers with highly
elliptical or rectangular cross-sections the sidewall shape was predicted to induce an
in-phase torsional oscillation that corresponds to the n =1 mode because the restoring
force is proportional to 6, measured relative to the longest diameter (Brown & Ahlers
2008a). In the interest of studying oscillations in non-circular containers we calculated
the generalized diameter function D(0, ') for some geometries.

Brown & Ahlers (2008a) considered containers with elliptical cross-sections defined
by D(0)= L[1 + e cos(26)] with ellipticity . An elliptical container can be considered
a perturbation of a cylindrical container with circular cross-section in which ¢ is
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the small parameter. A second-order expansion around the longest diameter gives
D(0,o')=L(1—2e0> —a'?/2). The n =2 mode should be dominant for small &, while
the n =1 mode is overdamped, but once ¢ is large enough that the n =1 mode is
underdamped it should soon become dominant because it occurs at lower frequency,
so the peak of its power spectrum is reduced least by damping. The restoring forces
for the n =1 and n =2 modes are equal for ¢ =1/4, so at that point we would expect
the n =1 mode to dominate, but because of the complicated effect of fluctuations of
§ it 1s difficult to give a more precise value for a transition.

In a rectangular container of horizontal aspect ratio A the potential becomes
asymmetric around the diagonal. A first-order expansion around a diagonal gives
the diameter function Dy~ [1 — A*Y(|6]| + |&'|)]D,,, where the & terms correspond
to the two sides of the longest diameter D,,. The scaling with |o’| rather than o'
should give a non-sinusoidal oscillation and changes the expected p(«’) to a double-
sided exponential as explained by Brown & Ahlers (2008a) for the in-phase torsional
oscillation. The slosh and twist displacements provide equal contributions to the
restoring force, so we expect the n =1 mode to dominate in rectangular containers
because it is at a lower frequency.

We note that the tilt-induced oscillations studied by Brown & Ahlers (2008a) are
similar to the predicted cross-section-dependent oscillations because the restoring
force is proportional to €', so this restoring force can drive the n =1 mode. The
oscillations found by Brown & Ahlers (2008a) had frequencies smaller than w,
when induced by a small tilt angle and did not have an advective scaling regime
in the power spectrum with P(w)oc w™!. Thus they were best described without the
advective term in the model. This can be the case because the restoring force is relative
to fixed locations in the container and can perturb the LSC without the requirement
of producing closed oscillations. We presume that either type of mode can exist for
cross-section-dependent oscillations in which the non-advective mode occurs for small
asymmetries with the n =1 advective mode only occurring for larger asymmetries.

5. Conclusions

We used a physically motivated stochastic model to explain the observed torsional
and sloshing oscillations. The proposed mechanism for the restoring force is the
pressure produced by the sidewall to contain the LSC, which can have a component
to drive the LSC towards a shape with a longer path length. This result came
from extending an earlier model used to predict that the LSC would align with the
longest diameter in a container with non-circular cross-section by simply relaxing
the assumption that the LSC travels through the cell centre. By further relaxing the
assumption of a planar LSC and adding the necessary advective term which was zero
before, this model was extended to describe an advected oscillation which contains
both the observed torsional and sloshing modes. Considering pressure gradients due
to the sidewalls, advection along the direction of the LSC, inertial damping and a
stochastic driving force as the relevant terms, we can explain the structure, frequency
and amplitude of the observed oscillations. The apparent torsional and sloshing
oscillations can now be understood as manifestations of travelling waves which are
advected along with the LSC. Since the restoring force for both oscillation modes
comes from the slosh displacement, the out-of-phase torsional mode cannot exist
without a sloshing mode.

The agreement of the oscillation frequency with twice the cell-crossing time (Qiu &
Tong 2001bh) was in the past considered as a sign of the alternating emissions of
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plumes from the thermal boundary layers (Villermaux 1995). However, it was shown
recently that plumes are not emitted alternately from the thermal boundary layers
(Xi et al. 2009). We have now shown that this agreement can be explained by
advection with a natural frequency of the bulk flow. It is notable that we never had
to invoke vertical heat transport, thermal boundary layers or spatially or temporally
periodic plume emission as either driving forces or boundary conditions. At this
point we believe we can explain the origin of all of the known dynamics of the
LSC using stochastic differential equations based on approximate volume averages of
the Navier—Stokes equations. The physics has included buoyancy, viscous damping,
effective damping from rotational inertia, restoring forces from pressure gradients,
turbulent fluctuations and various perturbations from asymmetries. Thus the LSC
dynamics seem to be inherent to the bulk flow and independent of the thermal
boundary layers. The dramatic cessations were described by a different regime of
the model in which fluctuations in § are important, indicating that the two sets
of dynamics are independent despite the fact that the duration of a cessation is
comparable to an oscillation period. The connection is that these time scales were
both fundamentally set by advection.

While we calculated and tested results for cells with circular cross-sections, this
model is formulated in such a way that it can be applied to cells with other geometries.
Specifically, the diameter function D(0, ') describing a horizontal LSC cross-section
is used as an input for the model. This can in principle be applied to other container
geometries as long as the flow is a single convection roll. Since this model has been
so successful at describing the dynamics with a single-roll LSC, the next logical step
is to attempt to apply it to more complicated buoyancy-driven convection problems,
many of which involve multiple-roll LSCs.
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